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Abstract

A flexible structure with surface-bonded piezoceramic patches is modelled using Timoshenko beam
theory. Exact mode shapes and natural frequencies associated with the flexural motion are computed for
various piezoceramic distributed actuator arrangements. The effects of patch placement and of shear on the
modal characteristics are demonstrated using a cantilevered beam as an example. Perfect bonding of the
piezoceramic to the beam substructure is assumed, and for the purposes of this paper only passive
piezoceramic properties are considered. The modelling technique and results obtained in a closed form are
intended to assist investigations into the modelling and control of active structures with surface-bonded
piezoceramic actuators.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The use of distributed actuators for active vibration damping has been a topic of considerable
recent interest in the field of structural vibration control. Often structures must sacrifice stiffness
in order to achieve reduced weight requirements, for example in aerospace applications. However,
low stiffnesses can result in structures vulnerable to vibrations and hence in reduced performance
levels. In order to suppress vibration while retaining the desired low structural masses, smart
structures using distributed actuation are currently being researched. One method of achieving
distributed actuation for vibration damping is through the use of bonded piezoceramic actuators.
However, piezoceramic actuators possess significant mass and flexural rigidity, and can
significantly alter the dynamic behaviour of the structures they are bonded to. Therefore, it is
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important to include changes in beam characteristics due to piezoceramic patch placement into
dynamic models of vibrating structures.
Crawley and deLuis [1] and Garcia et al. [2], amongst others, investigated the active sensing and

actuation of vibrating structures using piezoelectric materials. However, early investigations
typically neglected the effects of the piezoelectric materials themselves on the modal
characteristics of structures. The assumption of negligible behavioural effects is acceptable for
low ratios of piezoelectric to substructure thickness, as in the case of structures bonded with
PVDF actuators (see, e.g., Ref. [3]). However, thick piezoelectrics such as PZTs (lead zirconate
titanates) tend to stiffen structures and can significantly affect the dynamic behaviour. Due to
their large masses and costs, it is also desirable to limit the sizes of piezoceramic actuators.
However, this results in non-uniform structural properties, which further complicate the vibration
behaviour.
Some recent studies have included the dynamic effects of localized piezoceramics into their

vibration models. Yang and Lee [4] determined the mode shapes of a stepped cantilever beam with
a single PZT actuator at the fixed end of the beam. Chan and Wang [5] modelled the more general
case of a cantilever beam with arbitrary placement of a single distributed mass, but did not include
the effects of distributed flexural rigidity. Chan et al. [6] extended this work to include the effects
of multiple distributed masses. Joshi [7] considered vibration characteristics of rockets including
the effects of mass depletion and of axial compression. Recently, Aldraheim et al. [8] investigated
practical considerations for optimal piezoceramic placement and sizing for various boundary
conditions, including the effects of both distributed mass and distributed flexural rigidity, but
focused on optimization rather than modelling. The present investigation extends the work of
Chan et al. [6] to include the effects of distributed flexural rigidity on the modes of vibration and
to provide accurate closed-form dynamic models of beam with multiple patches for the purposes
of controller design.
In this paper, a generic model for a vibrating cantilever beam with surface-bonded piezoceramic

patches is derived from Timoshenko beam theory and Hamilton’s Principle. Assuming
separability of time and space variables facilitates prediction of exact frequencies and modes
shapes. A tip mass term is included in the model to represent the possible presence of a payload or
tip sensor in typical applications. Non-uniform beam properties are included by modelling beams
using equivalent sets of connected beam segments. These beam segments are of equal length and
each possess uniform material properties. This method generates separate mode shapes for each
segment that when placed end-to-end yield overall system mode shapes. It also means any
arrangement of PZTs may be modelled and allows PZT sizes to be unconstrained. Finally in this
paper, numerical examples are presented and the effects of patch placement on the modal
characteristics are discussed. The method and analysis presented in this paper can also be applied
to beams subject to other boundary conditions without much difficulty.

2. Modelling

The classical one-dimensional Euler–Bernoulli equation for the flexural vibration of beams is
the simplest model available for representing the flexural motion of elastic beams. However, this
model is known to be inaccurate, especially for higher modes of vibration. It neglects factors that
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can influence the modal characteristics such as the effects of the cross-sectional dimensions. The
Timoshenko model refines the Euler–Bernoulli model by including shear deformation and
rotatory inertia effects. In the present study, Timoshenko beam theory is used to model a
cantilever beam with tip mass configuration.
For the beam differential element shown in Fig. 1, the angle of rotation due to bending is

represented by space and time-dependent angle cðx; tÞ; the shear force by Q and the bending
moment by M: Shear distortion is caused by the deformation of the beam due to the shear stress,
and is represented by space and time-dependent angle bðx; tÞ that influences the slope of the elastic
axis. The angles cðx; tÞ and bðx; tÞ make up the total angular distortion, which can be described by

@wðx; tÞ
@x

¼ cðx; tÞ þ bðx; tÞ; ð1Þ

where wðx; tÞ represents the deflection of the beam.

2.1. Equations of motion

The equations of motion of the flexible beam can be derived using the extended Hamilton’s
Principle (see, e.g., Ref. [9]). Partial differential equations that govern the motion of a flexible
beam as given by Timoshenko beam theory are:

@

@x
ðEIÞs

@cs

@x

� �
þ k0GsAs

@ws
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� cs
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� ðrIÞs
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@t2
¼ 0; ð3Þ

where subscripted s is used to distinguish between different beam segments, k0 is the shear
coefficient dependent on the cross-sectional area, EI is the flexural stiffness, A is the area, r is the
mass per unit length, and G is the shear modulus. Eliminating cs and ws; respectively, from
Eqs. (3) and (4), the following differential equations in ws and cs may be derived (see, e.g., Ref.
[10]):
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Fig. 1. Timoshenko beam element.
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Assuming separability of time and space variables and setting wsðx; tÞ ¼ FsðxÞejot in Eq. (5), the
characteristic equation in the spatial co-ordinate F that describes the deflection is obtained as

Fivs � l4sFs þ 2ðps þ qsÞF00
2 þ 4psqsFs ¼ 0; ð6Þ

where

l4s ¼
ðrAÞso

2

ðEIÞs
; ps ¼

ðrIÞso
2

2ðEIÞs
; qs ¼

ðrAÞso
2

2k0GsAs

:

Setting csðx; tÞ ¼ CsðxÞejot in Eq. (6) yields an identical characteristic equation for c; the spatial
co-ordinate that describes the angular rotation. From the characteristic equations, solutions may
be obtained of the form

FsðxÞ ¼ As sin asx þ Bs cos asx þ Cs sinh bsx þ Ds cosh bsx; ð7Þ

CsðxÞ ¼ �fasBs sin asx þ fasAs cos asx þ fbsDs sinh bsx þ fbsCs cosh bsx; ð8Þ

fas ¼
1
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a2s �
rsAs

k0AsGs

o2
� �

; fbs ¼
1

bs

b2s þ
rsAs

k0AsGs

o2
� �

ð9Þ

and the parameters as and bs are defined by a2s ¼ ðps þ qsÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðps � qsÞ

2 þ l4s

q
and b2s ¼ �ðps þ

qsÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðps � qsÞ

2 þ l4s

q
:

2.2. Boundary conditions

Modelling of the non-uniform composite beam is performed using segmentation to produce
component mode shapes for each beam section. The resulting mode shapes are assembled to
obtain the system mode shapes of the beam. In this research, segments of equal length are used,
however the principle applies equally well to variable segment sizes. Also, since consecutive
patches next to each other are modelled as equivalent to single large patches, small segment sizes
can therefore be used to get single PZTs of any length. This discretized approach has been found
to be useful for iterative problems such as optimal patch placement, where patch length may be
unknown. In the generic model presented in this document, patches are constrained to match the
segment lengths and are then specified as either present or absent for each segment. This means
that regardless of whether piezoceramics are present or absent, each beam segment always
possesses uniform internal beam properties.
The fixed-end boundary conditions of a cantilever beam are

w1ð0; tÞ ¼ 0 and c1ð0; tÞ ¼ 0:

Between beam segments, the compatibility conditions are:

wsðm�s ; tÞ ¼ wðsþ1Þðmþs ; tÞ;

csðm
�
s ; tÞ ¼ cðsþ1Þðm

þ
s ; tÞ;
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ðEIÞsð@csðx; tÞ=@xÞx¼m�s
¼ ðEIÞðsþ1Þð@cðsþ1Þðx; tÞ=@xÞx¼mþs ;

k0GsAsð@wsðx; tÞ=@x � csðx; tÞÞx¼m�s
¼ k0Gðsþ1ÞAðsþ1Þð@wðsþ1Þðx; tÞ=@x � cðsþ1Þðx; tÞÞx¼mþs :

In these compatibility equations, the boundaries considered occur between segments s and ðs þ 1Þ;
counting from s ¼ 1 for the segment at the fixed end to s ¼ m at the tip as shown in Fig. 2. The
symbol ms is used to indicate the positions along x at which the division boundaries are located. If
m segments of equal length are considered we can therefore define ms ¼ sL=m:
With the inclusion of a tip mass offset ot; the tip boundary conditions can be shown to be (see,

e.g., Refs. [11,12])

ðEIÞmð@cmðx; tÞ=@xÞx¼L ¼ �ðIt þ Mto
2
t Þð@

2cmðL; tÞ=@t2Þ � Mtotð@2wmðL; tÞ=@t2Þ;

k0GmAmð@wmðx; tÞ=@x � cmðx; tÞÞx¼L ¼ �Mtð@2wmðL; tÞ=@t2Þ � Mtotð@2cmðL; tÞ=@t2Þ:

Substituting the general expressions (7) and (8) for the mode shapes into these boundary
conditions yields

½F ðoÞ�V ¼ 0; ð10Þ

where ½F ðoÞ� is the characteristic matrix of size (4m	 4m), m being defined as the number of
segments (of equal or unequal length) the beam is divided into, and

V ¼ ½A1 B1 C1 D1 A2 B2 C2 D2?Am Bm Cm Dm�T

is the coefficient vector to be determined. The natural frequencies then correspond to the
eigenvalues of the characteristic matrix and hence can be found from

QðoÞ ¼ det FðoÞj j ¼ 0: ð11Þ

The corresponding eigenvectors can then be obtained by substituting oi into ½FðoÞ� and solving
the eigenvalue problem:

½FðoiÞ�Vi ¼ LiVi; ð12Þ

where Li are the eigenvalues of ½F ðoiÞ�: The resultant eigenvectors Vi then represent the vector of
mode shape constants for mode i:
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Fig. 2. Beam segmentation.
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3. Results and analysis

Mode shapes and natural frequencies will be computed for various arrangements of single- and
multiple-patch piezoceramic configurations. These natural frequencies will be compared against
those of the beam alone. Consideration of the effects of shear will be performed using
comparisons between results obtained using the Timoshenko beam model and the Euler–Bernoulli
beam model. The effects of varying the shear parameter value will also be considered.

3.1. Modal analysis

For the purposes of this analysis configurations using multiple segments of equal length are
used. All configurations are represented using binary notation, where the number of digits is the
same as the number of segments of equal length that the beams are divided into. The first digit in
the binary number describes the segment closest to the fixed end and the final digit describes the
segment closest to the tip, and a ‘1’ indicates a PZT present on the segment described while a ‘0’
indicates no PZT present. The patch placement shown in Fig. 3 can therefore be described as
‘0110111000’ and can describe two patches present, one from 0:1L to 0:3L and the other from
0:4L to 0:7L:
The first two system mode shapes for a cantilevered beam divided into two segments are

included in Fig. 4 for each of the following configurations: no piezoceramics present (‘00’), a
single piezoceramic present at the hub end of the beam only (‘10’), and a single piezoceramic
present at the tip end of the beam only (‘01’). The beam and PZT properties used in this study are
listed in Table 1. From these simple configurations qualitative understanding of the effects of
distributed masses and stiffnesses on beam vibration may be attained. For example, Fig. 4(b)
demonstrates that when piezoceramic patches are placed over the region from x=L ¼ 0 (the hub)
to x=L ¼ 0:5 as for the ‘10’ case, the resultant additional stiffening reduces the second mode
deflection in this region and increases it elsewhere. The peak of bending also relocates to
x=LE0:55; outside the piezoceramic region. When a patch is placed over the region from x=L ¼
0:5 to x=L ¼ 1 (the tip) as for the ‘01’ case, the peak shifts to x=LE0:45; again outside the
piezoceramic region.
The effects of patch placement on the natural frequencies of vibration are also noted in the

legend in Fig. 4 using non-dimensional frequency ratios. The frequencies for each configuration
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Fig. 4. Comparisons of mode shapes of deflection using various two segment piezoceramic configurations for (a) mode

1 vibration and (b) mode 2 vibration. Deflection plots are scaled for unity integrals.

Table 1

Beam and piezoceramic properties

Property Beam Piezoceramics

Height, h 0.05m 0.05m

Breadth, b 0.004m 0.002m

Density, r 7800 kg/m3 7700 kg/m3

Length, L 0.30 —

Young’s modulus, E 193GPa 62GPa

Shear modulus, G 74GPa 23.8GPa

Tip mass, Mt 0.036 kg —

Tip offset, ot 0.008m —
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are compared to the natural frequency o0 associated with the case for no PZT actuators. For
mode 1, the majority of bending occurs close to the hub, so a patch placed in this region tends to
stiffen the beam against vibration and hence raises the natural frequency, as in the ‘10’ case. Since
little bending for this mode occurs towards the tip, a patch in this region as in the ‘01’ case does
little to stiffen the beam but instead acts as an additional tip mass, reducing the natural frequency.
For mode 2 vibration, larger curvature change occurs approximately in the regions of x=L from 0
to 0.2 and 0.4 to 0.6 than elsewhere. Therefore both the ‘10’ and ‘01’ PZT configurations
contribute to beam stiffening and hence raise the natural frequency.
However, while some intuitive understanding of the effects of patch placement on vibration can

be achieved from inspection in this way, PZTs at all times contribute to both stiffness and mass.
The above observations demonstrate that the presence of PZT patches significantly alters the
modal characteristics of the composite structure. Hence, it is important when performing
quantitative vibration analyses and dynamic modelling of multiple patch configurations to
perform exact numerical computations using methods such as the one presented in this document.
A typical arrangement used for investigating more than two segments is illustrated in Fig. 3.

This particular arrangement can represent either five small patches each of length 0:1L or two
larger patches of length 0:2L and 0:3L respectively. Any desired patch arrangement may also be
represented in this form. In Fig. 3, L1 is the distance from the fixed end to the first PZT, L2 is the
length of the first PZT, L3 is the distance between the start of the first PZT and the start of the
second PZT, and L4 is the distance between the start of the first PZT and the end of the second
PZT. These variables are useful in analysing the beam vibration behaviour for two bonded PZTs
of variable lengths.
The dynamic behaviour of the first four modes of vibration for various patch configurations is

characterized using the frequency ratios provided as Fig. 5, with the associated mode shapes
shown in Fig. 6. Here o0 represents the fundamental natural frequency of the beam substructure
(i.e., for a configuration represented by ‘0000000000’), while o represents the frequency of the
composite structure. Plots of the first few mode shapes for a few different configurations
normalized such that the integrals of the shapes with respect to the spatial co-ordinate are unity.
Two cases are presented here. Fig. 5(a) details the frequency ratios for the case of a single patch

of varying length. Fig. 5(b) details the case of two patches present, where one patch has a fixed
length of 0:2L and the length of the other patch varies. These results may be compared to those
presented by Chan et al. [6], who investigated the effects of distributed mass on the modal
characteristics but did not include flexibility effects. They observed that the frequency ratios for
similar configurations decreased for increasing distributed mass sizes, which may be attributed to
inertial effects. However, in the present study, attempts have been made to include the effects of
patch flexibility on the modal characteristics in order to investigate their significance.
In the study by Chan et al. [6], plateaus were observed in the frequency ratios for variable

normalized length ðL4 � L3Þ=L: It was theorized that the number of these plateaus corresponded
to the number of nodes covered by the distributed mass. In Figs. 5(a) and (b), and from the
corresponding mode shapes in Fig. 6, it may be seen by close inspection that the natural
frequencies increase when PZTs are located in regions of high modal flexure and decrease when
PZTs are located in regions of low flexure. For example, the mode 1 frequency ratio in Fig. 5(a)
peaks at ðL4 � L3Þ=L ¼ 0:5: The gradient of this frequency ratio plot is steepest for normalized
lengths of approximately 0 and 0.9. At the peak, a single patch may be considered to extend over
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the region from 0:1L to 0:6L: Since the first mode shape for a cantilever beam experiences the
largest flexure near the hub and low flexure elsewhere, these observations support the theory
presented above. In this shape, although the stiffening effects dominate when a patch is placed
close to the fixed end, the inertia effects become increasingly significant as the patch extends
towards the tip. Obviously, this stiffening effect is not present in the study by Chan et al. [6], hence
their observation of decreasing frequencies with distributed mass size. For the higher mode
shapes, the stiffening effects of the patches seem to dominate and the inertia effects appear to be
less significant as demonstrated by the overall increase in the frequencies with patch size.
However, the combination of the stiffening and the inertia effects results in localized fluctuations
in the frequency ratios as illustrated in these figures.
The dynamic behaviour of composite beams therefore appears to follow the trend that patches

placed in regions of low modal flexure contribute little to beam stiffening but significantly to beam
mass. This tends to decrease the natural frequency. Patches located in regions of high modal
flexure contribute significantly to the composite beam stiffness and so tend to increase the natural
frequency. However, patches always contribute in some degree to the effects of both mass and
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stiffness on beam vibration regardless of position. It is this conflict between the effects of mass and
stiffness, which warrants exact determination of natural frequencies using computational methods
as described in the present investigation.
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3.2. Shear effects

From the Timoshenko beam equations, it is also possible to consider the effects of shear in the
model for further insight into how the natural frequencies vary with patch position. To this end,
the plots in Fig. 7 show the ratios of the natural frequencies obtained using the Timoshenko
model against those obtained from an equivalent Euler–Bernoulli model in which shear effects are
neglected. The value of the shear parameter k0 is also varied between 5

6
as proposed by such

researchers as Cowper [13] and 2
3
as originally suggested by Timoshenko [14]. This results in two

ratio plots for each of the six modes considered in the plot.
As may be seen from Figs. 7(a) and (b), the Timoshenko natural frequencies, oT ; are in all cases

here considered smaller than the respective Euler–Bernoulli natural frequencies, oEB: For the first
mode of vibration, the difference between the two models is marginal, however as the mode
number increases the differences become more pronounced. For mode six, the difference
approaches 2%, which corresponds to nearly 60 rad/s for the beam under consideration. The
difference between the two Timoshenko models for the different shear parameters also becomes
more pronounced for higher modes, reaching 0.25% for mode 6. In all cases here shown the
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model using a value of 2
3
for the shear parameter has lower natural frequencies than for that using

a value of 56:
Also prominent in the plots in Fig. 7 are similar rippling patterns to those observable in Fig. 5.

Since the Euler–Bernoulli model itself here includes the stiffening and inertial effects of the
patches, the waves in these plots must therefore be produced by the inclusion of shear.

4. Conclusions

A closed-form approach to the modelling of composite structures such as those formed by
bonding piezoceramic patches to the surface of beams has been presented. Segmentation of the
structure into numerous smaller beams of uniform beam properties allowed separate mode shapes
of vibration to be evaluated for each segment. When placed end-to-end, these yielded the overall
mode shapes for the entire beam. This approach may be used for any configuration of patches and
is desirable for controller design for structures employing distributed actuation. The effects of
placement of PZT patches on the modal characteristics of a cantilever beam have also been
described, as have the effects of including shear and of variation in the shear parameter.

Appendix A. Nomenclature

x axial co-ordinate
t time
w transverse deflection
c angle of rotation
b shear distortion
Q shear force
M bending moment
EI flexural rigidity
r mass per unit volume
A cross-sectional area
I moment of inertia
k0 shear coefficient
G shear modulus
F deflection spatial co-ordinate
C angular rotation spatial co-ordinate
qðtÞ generalized time co-ordinate
A;B;C;D; a; b; fa; fb mode shape constants
m number of segments
n number of modes
s segment number
m division boundary location
L link length
h link height
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b link breadth
tb link thickness
ot tip mass offset
Mt tip mass
It tip inertia
F characteristic matrix
V coefficient vector
o natural frequency
i mode number
L eigenvalues of F
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